• Skip to primary navigation
  • Skip to main content
  • Home
  • Research
  • Publications
  • News
  • Code Repository
  • People
  • Join the Lab
  • Group Photos
  • Courses

Advanced Vision and Learning Lab (AVLL)

Texas A&M University College of Engineering

Histogram Layers for Synthetic Aperture Sonar Imagery

September 2, 2022

J. Peeples, A. Zare, J. Dale, and J. Keller, "Histogram Layers for Synthetic Aperture Sonar Imagery," in IEEE International Conference on Machine Learning and Applications (ICMLA), 2022, doi: 10.1109/ICMLA55696.2022.00032.

Synthetic aperture sonar (SAS) imagery is crucial for several applications, including target recognition and environmental segmentation. Deep learning models have led to much success in SAS analysis; however, the features extracted by these approaches may not be suitable for capturing certain textural information. To address this problem, we present a novel application of histogram layers on SAS imagery. The addition of histogram layer(s) within the deep learning models improved performance by incorporating statistical texture information on both synthetic and real-world datasets.

© 2016–2025 Advanced Vision and Learning Lab (AVLL) Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • Facebook
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment